

High Performance Computing Facilities for the Next Millennium

Computational Systems

SC99 Tutorial November 14, 1999

James Craw
Computational Systems, Group Leader
craw@nersc.gov

Background

- MPP T3E-900 LC with 696 PEs UNICOS/mk
 - 644 Application PEs
 - 256 MB per PE
 - 383 GB of Swap Space 5 partitions, each 5-way striped
 - 582 GB Checkpoint File System 5 partitions, striped
 - 1.5 TB /usr/tmp File System
 - 7-25 GB Home File System, DMF managed
 - Queuing Systems: NQE/NQS

Background (cont'd)

- PVP One J90 SE Interactive System running UNICOS
 - 32 CPUs
 - 8 GB Memory
 - Home File Systems NFS Exported to Batch Systems
 - **♦** NFS over HPPI ⇒ NFS over gigaring
 - Queuing Systems: NQE/NQS

Background (cont'd)

- PVP Three J90 SV-1 Batch Only Systems running UNICOS
 - 64 CPUs Total
 - 8 GB of Memory per System (24 GB total)
 - 1.0 TB local /usr/tmp
 - Queuing Systems: NQE/NQS

Evolution of Computing at NERSC

System Management (cont'd)

MPP

H/W Evolutions for NERSC

 $T3E-600 LC-136 \Rightarrow$

Upgraded to T3E-900 LC-544 \Rightarrow

Added second T3E-600 LC-104 and

Then Upgraded To T3E-900 LC-153 \Rightarrow

Merged T3E's to make a single T3E-

LC-696

900

S/W Evolutions for NERSC

UNICOS/mk $(1.0 \Rightarrow 2.0.4.67)$

Since March 1999 there have been 24 archives released. That's 24 in 31 weeks

Key System Management Techniques

- Super Homes (PVP & MPP)
 - Free Space Managed Via Hierarchical Storage System
 - **♦ HPSS Manages Offline Storage System**
 - ◆ Data Migration Facility (DMF) Manages Online Storage (User Filesystems)
 - > Enabled when filesystem fills to a specified threshold
 - > Meta-data portion of user file remains online
 - > Data portion of a user file is stored offline via ftp to HPSS
 - > Offline data can be recalled explicitly/implicitly by a user

Key System Management Techniques

- Super Homes (PVP & MPP cont'd)
 - **♦** Recoverability
 - **♦** Reduces size of nightly backups
 - > Online files' meta-data and data are backed up
 - > Offline files' meta-data (including DMF retrieval data) only is backed up
 - **♦ User Limits Managed via Filesystem Quotas**
 - ♦ It Works Well!

Key MPP System Management Techniques

■ High System Utilization

- Requires Balanced System
 - ♦ Stable O/S, Micro Kernal, Single System Image, Source Code
 - **♦ CPUs**
 - **♦** Adequate Disk space
 - > **Homes** (+ **DMF**)
 - > /usr/tmp
 - > System (alternate boot)
 - > Checkpoint/Restart (3 4 x total memory)
 - > Swap (2 3 x total memory)

Key MPP System Management Techniques

• Balanced System (cont'd)

- ♦ I/O bandwidth
- **♦ CPUs**
- **♦** Memory
- **♦** Checkpoint/Restart
- **♦ Queuing System (NQE/NQS)**
- ♦ PSCHED for T3E
 - » Gang Scheduling
 - » Prime Job
 - » Load Balancing (process migration)

NERSC T3E Scheduling Goals

- Minimize idle time in the APP region
- Provide fast interactive response while managing the total interactive workload on the system
- Provide reasonable and even turnaround across all the batch queues
- Encourage users to scale applications to large number of PEs

Mcurie Job Flow and Control Diagram

NERSC T3E Batch System

- NQE holding pen for incoming requests
 - Production Queues: LWS limit of 3 jobs per user
 - Debug Queues: LWS limit of 1 job per user

Queue	P EL in	T ine L in	Pri o ity
Pe 5 1 2	512	4 h r	45
Pe 2 5 6	256	4 h r	30
Pe 1 2 8	128	4 h r	25
Pe 6 4	64	4 h r	20
Pe 3 2	32	4 h r	15
Pe 1 6	16	4 h r	10
Long 128	128	12 h r	27
Lon 2 56	256	12hr	28
De b u g _ m	1128	10 m i n	29
De b u gs <u>m</u>	32	30 m i n	23

NERSC T3E Batch System (cont'd)

■ NQS Control Script (PERL 5)

- Reads configuration file
 - **♦** Contains alternate queue configurations
 - **♦** Configuration selection based on time, day of week
 - ♦ Which queues are "on", "off", "backfill", etc.
 - **♦** Specifies global, complex and queue limits
- Gathers system state: parses output of ps, grmview, qstat, psview

NERSC T3E Batch System (cont'd)

- NQS Control Script (cont'd)
 - Modifies NQS (via qmgr) to conform with selected configuration
 - Uses checkpoint/restart to switch between configurations
 - **♦** Up to 5 checkpoints done in parallel average checkpoint of full machine in under 4 minutes!
 - Logs system state and all actions to time-stamped log file

Observations

- System Wide Checkpoint/Restart has many benefits
 - Facilitates queue scheduling shifts
 - Reduces lost time and lost work
 - Improves individual programs efficiency
 - **♦ One application on NERSC**
 - > Pre-processing 30 minutes set up
 - > Post-processing ~30 minutes for clean-up
 - **♦** Changing from a 2 hour queue limit to a 12 hour limit
 - > 2 hour queue provided 6 hours of science computation
 - > 12 hour queue provided 11 hours of science computation
 - **♦** C/R allows multiple applications to get a share of time while allowing application to "perceive" a long run time.
 - ♦ 83% more science work done for the same amount of time

MPP Charging and Usage FY98-99

NERSC MPP Success Story

- Vendor's Psched has become very stable
- Mods to GRM Service Limits are an effective means of managing the interactive workload
- Prime job feature is an effective tool critical for
 - Providing quick interactive response
 - Scheduling large jobs
- System management is simplified
- System-wide checkpoint/restart was integral to reducing lost time and lost work thus improving utilization
- Utilization is high (peak 92 97%). Nearly three years of joint effort
- Successfully completed paradigm Shift to massively parallel production processing

COTS Linux Cluster & Embarrassingly Parallel Jobs

- **■** Hardware
 - MPP: Homogeneous nodes
 - COTS: Heterogeneous slices of homogeneous nodes
- **■** System
 - MPP: Single system image
 - COTS: Multiple identical systems
- Network Interconnect
 - MPP: Fast, proprietary
 - COTS: Slow, commercial

COTS Linux Cluster & Embarrassingly Parallel Jobs

- **■** Filesystem
 - MPP: Global
 - COTS: Shared and local
- N-Way Jobs
 - MPP: N-way job requires N CPUs
 - COTS: 1 node down does not stop N-way job
- Space, Cooling, Power Requirements
 - MPP: Densely Packed Less space, more power, more cooling
 - COTS: Loosely Packed More space, less power, less cooling

PDSF Hardware Projections

■ Current

• CPU: 1540 SPECint95

• DISK: 4.2 TB

• NET: 100 Mbs

2 Years

• CPU: 6000 SPECint95

• DISK: 16 TB

• NET: 1000 Mbs

■ 4 Years

• CPU: ~15000 SPECint95

• DISK: ~50 TB

• NET: 1000+ Mbs

PDSF System Administration Plans (Near Term)

- NFS Mounted System Eases Homogeneous System Configuration
- Mosix -- Kernal-level adaptive load-balancing and memory ushering
- Heterogeneous Slices Mapped Onto Heterogeneous Usage Patterns: e.g. Interactive, Short, Long Jobs

Future SP System Directions

- **■** Hardware Evolution
 - IBM RS/6000 SP: 304 SMP Nodes (2 cpus/node) ⇒ IBM RS/6000 SP: 152 SMP Nodes (16 cpus/node)
 - Each node is a separate computer!!
- Storage Evolution
 - 10 TB formatted global filesystem ⇒
 20 TB formatted global filesystem
- Storage Usage
 - 5 x 1.1 TB user home filesystems, 3.3 TB scratch space, 1.1 TB common software fiflesystem + extra space
 - How to manage 20 TB formatted disk space???

Future SP System's Management

- Massively parallel tightly coupled system
- Distributed system management
- Managing for high availability
- **■** Distributed user management
- Node maintenance (upgrades, installs, synchronization, configuration)
- **■** Complex networking
- System-wide checkpoint/restart

System Management

■ Security

- UNICOS and UNICOS/mk have Integrated Security Capabilities
 - ♦ User Database (udb)
 - > Resource Limits
 - > Password Management
 - > Privileges
 - ♦ Security Log

System Management

- Security (cont'd)
 - User Accounts
 - **♦ Disable for Non-Use**
 - **♦** Enforce Password Policy (8 characters, Special character, number)
 - **♦ Educate Users**
 - **♦** Tell users to contact you if there has been any suspicious logins

Security - System Management (cont'd)

- Security (cont'd)
 - Monitoring Tools
 - **♦** Tripwire
 - **♦ UNICOS MLS Security Logging**
 - **♦ Spflick File Monitoring**
 - **♦ BRO (packet sniffer)**
 - Network Configuration Management
 - **♦ Know Your Network**
 - ♦ Keep Current and Maintain a Network Diagram

Security - System Management (cont'd)

- Security (cont'd)
 - TCP Wrappers
 - Install Firewalls Where They Make Sense
 - **♦ Staff Desktops**
 - **♦ Special Purpose (Operator) Consoles**
 - SSH
 - **♦ Local Mods Integrated with UNICOS 10.0 and UNICOS/mk 2.0.4**
 - > Over a year effort unable to get vendor to port or support
 - **♦** Required for root access
 - ♦ Telnet will be turned off December 1999

Y2K - System Management

- Established and verified a Y2K baseline on each Computational System
- Setup Test Environment (alternate boot)
- Enormous amount of staff effort involved
- Additional system down time required
- **Know your contingencies/options**

Y2K - System Management

User Testing
Scientific Applications
Layered Software (DMF, NQE, MPT,
PE)
Systems H/W & S/W & O/S

Lessons Learned

- Balanced system means much more that just H/W. It means:
 - H/W that is sized right for your environment and application space
 - ♦ Disk space (swap, checkpoint, homes, /usr/tmp, system images)
 - **♦ CPU performance**
 - **♦** Size of memory

Lessons Learned (cont'd)

- S/W
 - ♦ O/S Stability
 - **♦ Current Compilers**
 - **♦ Third Party Applications**
 - **♦ Customizable Scheduling Scripts**
 - **♦** Access to Source Code, Buildable Preferred
- Good staff (both vendor and NERSC) was critical to our success
- Nothing goes exactly as planned, especially the schedule. Need to know contingencies
- Single system image was a big positive attribute
- S/W performance improvements lags behind H/W performance improvements

Challenges the Future Holds

- As HPC sites move towards more clustering of SMP systems the probability of Tera-Scale computing on a "Super Computing Scale" is <u>finally</u> at hand. The challenge for HPC sites is to work together more and to work smarter with the vendor(s).
- We also need to retain our highly trained staff. Staffing may become our "Achilles' heel".

Challenges the Future Holds (cont'd)

■ As commodity based H/W becomes more viable for Tera-Scale Super Computing the more complex/scalable the system S/W must become. From a system administrator perspective, a "turn-key" style of a Tera-Scale computer is not likely in the foreseeable near future. Much work is still at hand.

Conclusion

We've all got our work cut out for us!